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Abstract— Radiomics as a novel quantitative approach to 
medical imaging is an emerging area in the field of radiology. 
Artificial Intelligence offers promising tools for exploiting and 
analyzing radiomics. The objective of the present study is to 
propose a methodology for the design, development, and 
evaluation of Machine Learning (ML) models for the prediction of 
the recovery progress of skeletal muscle injury over time in rats 
using radiomics.  

Radiomics were extracted from contrast enhanced Computed 
Tomography (CT) data and ML algorithms were trained and 
compared for their predictive value based on different CT imaging 
parameters. Ten different ML regression algorithms were tested 
and the optimal combination of radiomics for each algorithm and 
CT imaging parameter settings combination was studied.  

The best ensemble learning model, trained on the 70kVp, 
100mA imaging parameter dataset, achieved a Mean Absolute 
Error score of 1.22. The results suggest that radiomics extracted 
from CT images can be used as input in ML regression algorithms 
to predict the volume of a skeletal muscle injury in rats. Moreover, 
the results show that CT imaging settings impact the predictive 
performance of the ML regression models, indicating that lower 
values of tube current and peak kilovoltage contribute to more 
accurate predictions. 

 

 
This work involved human subjects or animals in its 

research. Approval of all ethical and experimental procedures 
and protocols was granted by the Vall d'Hebron Animal Ethics 
Committee under Application No. 52/17, and performed in line 
with the Spanish (Real Decreto 53/2013) and European 
(2010/63/UE) legislation. 
 

V. Eleftheriadis is with Bioemission Technology Solutions - 
BIOEMTECH, Mesogeion Av. 387, 15343, Athens, Greece 
(e-mail: vasilis.eleftheriadis@bioemtech.com). 

J. R. H. Camacho is with Medical Molecular Imaging Group, 
Vall d’Hebron Research Institute (VHIR), CIBER-BBN, 
CIBBIM-Nanomedicine, ISCIII, Hospital Universitari Vall 
d’Hebron, Universitat Autònoma de Barcelona (UAB), Passeig 
de la Vall d’Hebron 119-129, 08035 Barcelona, Spain (email: 
raul.herance@vhir.org). 

V. Paneta is with Bioemission Technology Solutions - 
BIOEMTECH, Mesogeion Av. 387, 15343, Athens, Greece (e-
mail: vpaneta@bioemtech.com). 

B. Paun is with Medical Molecular Imaging Group, Vall 
d’Hebron Research Institute (VHIR), CIBER-BBN, CIBBIM-
Nanomedicine, ISCIII, Hospital Universitari Vall d’Hebron, 
Universitat Autònoma de Barcelona (UAB), Passeig de la Vall 
d’Hebron 119-129, 08035 Barcelona, Spain (email: 
brunopaun@gmail.com). 

C. Aparicio is with Medical Molecular Imaging Group, Vall 
d’Hebron Research Institute (VHIR), CIBER-BBN, CIBBIM-
Nanomedicine, ISCIII, Hospital Universitari Vall d’Hebron, 

Index Terms— Radiomics, Machine Learning, Computed 
Tomography, Muscle Injury, Recovery, Prediction Model, 
Preclinical Imaging 

 

I. INTRODUCTION 

IOMEDICAL Imaging, since its invention, has been an 
essential tool for clinical decision, medical 
intervention, and research. Recent advancements in 
computer technology, such as the increase in 

computing power, the digitalization of medical imaging and 
thus the increase in dataset sizes and their harmonization, offer 
new possibilities of utilizing medical images not just as pictures 
intended solely for visual interpretation but as a source of data 
as well [1], [2]. 
      The concept of radiomics was initially introduced in 2012 

by Lambin P et al. [3] and is a process of extracting high-

dimensional feature data from digital medical images to 

quantitatively describe attributes of Regions of Interest (ROIs). 

The field of radiomics is based on the hypothesis that 

biomedical images contain information imperceptible by the 

Universitat Autònoma de Barcelona (UAB), Passeig de la Vall 
d’Hebron 119-129, 08035 Barcelona, Spain (email: 
carolina.aparicio@vhir.org). 

V. Venegas is with Leitat Technological Center. Carrer de la 
Innovació 2, Terrassa, 08225, Barcelona, Spain and 
Bioengineering, Cell therapy and Surgery in Congenital 
Malformations Laboratory, Vall d’Hebron Research Institute 
(VHIR), CIBBIM-Nanomedicine, Hospital Universitari Vall 
d’Hebron, Universitat Autònoma de Barcelona (UAB), Passeig 
de la Vall d’Hebron 119-129, 08035 Barcelona, Spain. 

M. Marotta is with Leitat Technological Center. Carrer de la 
Innovació 2, Terrassa, 08225, Barcelona, Spain and 
Bioengineering, Cell therapy and Surgery in Congenital 
Malformations Laboratory, Vall d’Hebron Research Institute 
(VHIR), CIBBIM-Nanomedicine, Hospital Universitari Vall 
d’Hebron, Universitat Autònoma de Barcelona (UAB), Passeig 
de la Vall d’Hebron 119-129, 08035 Barcelona, Spain (email: 
mmarotta@leitat.org). 

M. Massa is with Leitat Technological Center. Carrer de la 
Innovació 2, Terrassa, 08225, Barcelona, Spain (email: 
mmasa@leitat.org). 

G. Loudos is with Bioemission Technology Solutions - 
BIOEMTECH, Mesogeion Av. 387, 15343, Athens, Greece (e-
mail: george@bioemtech.com). 

P. Papadimitroulas is with Bioemission Technology 
Solutions - BIOEMTECH, Mesogeion Av. 387, 15343, Athens, 
Greece (e-mail: panpap@bioemtech.com). 

B 

This article has been accepted for publication in IEEE Transactions on Radiation and Plasma Medical Sciences. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TRPMS.2023.3291848

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:vasilis.eleftheriadis@bioemtech.com
mailto:raul.herance@vhir.org
mailto:vpaneta@bioemtech.com
mailto:brunopaun@gmail.com
mailto:carolina.aparicio@vhir.org
mailto:mmarotta@leitat.org
mailto:mmasa@leitat.org
mailto:george@bioemtech.com
mailto:panpap@bioemtech.com


TRPMS-2023-0068 

   

 

human eye that reflects underlying pathophysiology and that 

these relationships can be revealed via quantitative image 

analysis [2]. This way, by quantifying differences in image 

intensity, shape, or texture, the use of radiomics does not only 

enhance the existing data available to clinicians with additional 

information but also helps overcoming the subjective nature of 

medical image interpretation [4].  

     Radiomics extraction can lead to a significantly vast number 

of features from each medical image, that are usually combined 

with Artificial Intelligence (AI) methodologies and more 

precisely with Machine Learning (ML) algorithms [7]. 

Moreover, the ability of radiomics to quantify textural 

information from biomedical images allows ML algorithms to 

focus on one-dimensional arrays of numerical input features 

instead of three-dimensional images. 

     Radiomics have primarily been applied in oncology, 

however, the potential benefits of radiomics are not limited to 

this field. Several recent studies in oncology utilize radiomics 

features in combination with AI techniques for cancer 

diagnosis, prediction, and management in a variety of organs 

and systems [8] such as prostate [9], [10], lung [11]-[13], 

kidney [14], brain [15], [16], liver [17], [18], adrenal gland [19], 

[20] and pituitary gland [21], [22]. Radiomics studies not 

related to oncology have started to appear as well, including 

studies on detection of cardiovascular risk factors on cardiac 

structure and tissue [23], classification and prediction of mild 

cognitive impairment and Alzheimer’s Disease [24], 

identification of temporal lobe epilepsy [25], diagnosis, 

classification and prediction of oral diseases [26], phenotyping 

of cardiovascular disease [27], diagnosis, prediction and 

prognosis of stroke [28] and placental tissue characterization 

[29]. In sports medicine, magnetic resonance imaging (MRI) 

has been used extensively in studies focused on classification 

and assessment of muscle injuries. In such studies researchers 

attempted to predict the time to return to sport after injury, or 

return to play (RTP), of athletes based on MRI muscle injury 

grade classification without being able to be conclusive about 

its predictive value [31]-[34].  

     Regarding skeletal muscle injury recovery studies, Paun et 

al. [30] focused on the applicability of in vivo CT imaging to 

track skeletal muscle lesion recovery over time in rats. The 

Least Absolute Residual (LAR) method available in Matlab 

was used to train an exponential model that predicts the 

recovery of skeletal muscle injury over time in rats. Feeding 

their model with the volume of the initial injury (Day 0) and the 

post-injury time, in days, Paun et al. achieved a mean root-

mean-square error (RMSE) of 6.8 in their predictions. In the 

current study we are assessing the ability of radiomic features 

to predict the recovery of skeletal muscle injury over time on 

the same CT dataset of Paun et al. when used as input in ML 

algorithms. 

     To our knowledge, there are no studies where radiomics 

features, and AI have been used to predict the healing process 

of skeletal muscle injuries. Consequently, the aim of this study 

was to introduce a methodology of creating a model that 

predicts the recovery progress of skeletal muscle injury in rats 

by applying ML techniques on radiomics features data and 

comparing the predictive quality of different CT imaging 

parameter settings. 

II. MATERIALS AND METHODS 

A. Data Description – Dataset Preclinical 

     In this study, we used the preclinical imaging dataset of 
skeletal muscle injuries in rats of Paun et al. study [30]. The 
dataset consists of CT images of 23 Wistar male adult rats. For 
the acquisition of all CT images a Quantum FX micro-CT 
scanner (PerkinElmer, Hopkinton, MA, USA) was used. In 
preparation for the CT studies the rats were anaesthetized and 
immobilized. Skeletal traumatic muscle injuries were induced 
by a transverse biopsy procedure in the muscle-tendon 
junction level of the rats’ left leg medial gastrocnemius muscle 
by an 18-gauge biopsy needle with a 0.84-mm inner diameter 
[35]. To help distinguish between injury and neighboring 
tissue, iopamidol was administered to the rats as a contrast 
agent.  

     In order to track injury recovery at different time points, 2 

studies were conducted, the Single Post-injury study, where 

injury is monitored only once after the injury and the 

Longitudinal one, where injury is tracked for several days post 

injury In the Single Post-Injury study, 20 rats were sorted into 

5 separate groups (n = 4 per group) according to the single 

follow-up day at 2, 4, 7, 10, or 14 days after injury, respectively, 

providing in total 40 CT instances (two instances for each 

mouse, one at the day of injury and one at each follow-up day 

post injury). In the Longitudinal study, three rats were imaged 

at all 5 mentioned follow-up days, providing a total of 18 CT 

instances (6 instances per mouse, including the one at the day 

of injury). Each instance consists of 4 CT images of different 

value combinations of the imaging parameters peak kilovoltage 

(kVp) and tube current (mA) as follows: 90kVp_200mA, 

70kVp_200mA, 90kVp_100mA and 70kVp_100mA. A 

schematic representation instances’ dataset can be seen in Table 

A1 (Supplementary Material). More details about the methods 

utilized for the acquisition of the CT studies’ data can be found 

in the study by Paun et al. [30].  

B. Injury Segmentation 

     A semi-automated segmentation approach of the ROIs was 

adopted and was initially used on all the 90kVp_200mA CT 

images. The segmentation of the injuries was performed on 3D 

Slicer (version 4.10.2) using the WandEffect label tool. [36] 

The “Threshold Paint” option was selected and the thresholds 

for minimum and maximum grey level intensity values, after 

experimentation, were set at 100 and 1200, respectively. In case 

of an air bubble forming inside the skeletal muscle after the 

injury was induced, the air bubble was included in the ROI. The 

“maximum pixels per click” selection setting of the WandEffect 

label tool kit was set at 2000 pixels and the “Fill Volume” 

option was selected. Finally, manual correction of the 

segmented area had to be applied as well.   

     Consequently, all CT instances were aligned to the 

90kVp_200mA CT images and the masks created during the 

segmentation of the 90kVp_200mA CT images were then used 

as segmentation masks to extract the ROIs from the rest of the 

CT images of the different imaging parameters as well for all 

CT instances. Exceptions were 2 instances where the 

90kVp_200mA CT images were rotated in relation to the CT 

images of different value combinations of imaging parameters. 
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This resulted in slightly different ROIs to be extracted from the 

90kVp_200mA CT images which would not allow the results 

of the different imaging parameters settings to be comparable 

and as a result these 2 instances were excluded from the dataset. 

In Figure 1 the image processing flowchart is depicted, 

including the muscle injury segmentation stage. 

 

 
Fig 1. Injury segmentation and Radiomic feature extraction 

process flowchart. 

 

C. Feature Extraction 

      Currently, there are two approaches to Radiomic features 

extraction. The first approach uses mathematical models to 

extract features relating to imaging features such as texture, 

intensity, or shape and is usually referred to as “feature-based” 

or “hand-crafted” radiomics [5]. The second is usually referred 

to as “Deep learning based radiomic (DLR) features” and is 

based on the hypothesis that once the Region of Interest has 

been segmented accurately from a medical image by a deep 

neural network, the information about the segmented region is 

already stored within the network. Since the total number of 

available instances from the dataset would be considered 

limited for the purpose of DLR extraction, the “hand-crafted” 

feature extraction approach was selected. The open source 

radiomics platform PyRadiomics [37] was used for the 

extraction of hand-crafted radiomics features, that can be 

categorized into the following groups [5]. The follow-up day 

after the injury was included as well in the initial pool of 

features, resulting in a total of 114 features.  

 

• Shape features [38]: which provide quantitative 

description of geometric properties of the ROIs/VOIs, 

such as surface area, total volume, diameter, 

sphericity, or surface-to-volume ratio. 

• First order statistics (histogram-based features) [38]: 

which describe the fractional volume for the selected 

region of voxels and the distribution of the voxels’ 

intensity, for example minimum, maximum, mean, 

variance, skewness, or kurtosis. 

• Second order statistics (textural features) [5], [39]: 

These features are extracted based on the following 

matrices derived from intensity relationships of 

neighboring voxels in a 3D image: 

a) Gray Level Co-occurrence Matrix  
b) Gray Level Run Length Matrix   
c) Gray Level Size Zone Matrix  
d) Neighboring Gray Tone Difference Matrix  

e) Gray Level Dependence Matrix  
 

      The shape “Voxel Volume” feature, which represents the 

volume of the Skeletal Muscle injury (ROI), was selected as the 

target value to predict for the ML models. Radiomics were 

extracted from all 58 instances forthfold, resulting in 4 separate 

datasets, one for each different value combination of the CT 

imaging parameters, as can be seen in Figure 1.  

 

D. Data Pre-processing  

     The range of the extracted radiomic feature values can vary 

greatly. Standardization is a technique often used as part of data 

pre-processing in a machine learning study when features of the 

input data set have significant differences between their ranges. 

On distance-based machine learning algorithms, like Support 

Vector Machines (SVM) or k-Nearest Neighbours (k-NN), 

features with values that are of different ranges do not weigh 

the same when calculating distance. Standardization gives all 

features the same influence on the distance metric. Also, 

regressions like LASSO or Ridge that place a penalty on the 

magnitude of the coefficients associated to each variable can 

have deficient performance when fitting data with feature 

values of different variance.  

     Since in this study models based on Support Vector 

Regressor (SVR), Ridge and Lasso regressors are going to be 

created and tested, the StandardScaler implementation of the 

free software machine learning library Scikit-learn [40] was 

used to produce scaled data that has zero mean and unit 

variance.  

     On distance-based ML algorithms, like Support Vector 

Regressor (SVR), Ridge and LASSO regressors, if the features 

of the input dataset have significant differences between their 

ranges, they do not have equal weight when calculating 

distance. Also, regressions like LASSO or Ridge that place a 

penalty on the magnitude of the coefficients associated to each 

variable can have deficient performance when fitting data with 

feature values of different variance. Since the range of the 

extracted radiomic values used in this study varies greatly, we 

used Standardization to harmonize influence on all features on 

the distance metric. Specifically, the StandardScaler 

implementation of the free software ML library Scikit-learn 

[40] was used to produce scaled data that has zero mean and 

unit variance. 

 

E. Feature Selection  

     For the feature selection process, we tested a combination 
of feature selection techniques. Initially, we used two filter 
techniques, one supervised (Mutual information) and one 
unsupervised (Pearson’s correlation coefficient), in order to 
quickly minimize the dimensionality of the dataset and 
afterwards we proceed with three wrapper techniques 
(Backward Elimination, Forward Selection and Bidirectional 
Elimination) to find the optimal feature combination for each 
ML algorithm, as described below. We also included three ML 
algorithms that use embedded feature selection methods in our 
set (LASSO, Ridge and ElasticNet regressors). 
     Feature selection is a pivotal step in a radiomics studies’ 

workflow, due to the high-dimensional dataset that radiomics 

feature extraction produces [42-44]. Although the number of 
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extracted radiomics features can be exceptionally large, the 

usual case is that a lot of them can be either highly correlated to 

one another and/or irrelevant to the target value. Including such 

features can result in a model that is easy to overfit, noise 

sensitive and with reduced generalizability [41]. In short, by 

reducing the number of input features the data becomes more 

statistically significant.  

     As a first step in our feature selection process the concept of 

mutual information [47] was used to measure the mutual 

dependence between the target value and the rest of the 

extracted radiomic features. All features with a mutual 

information score of 0 towards the target value were excluded 

from the dataset as being independent of the target value and 

thus irrelevant to the task at hand. Consequently, Pearson’s 

correlation coefficient [48] was utilized to measure the strength 

and direction of linear association between all pairs of 

remaining features. Highly correlated features with a Pearson’s 

correlation coefficient value greater than 0.97 were compared 

with one another and only the features with the highest 

correlation to the target value were evaluated. The rest of the 

highly correlated features were considered redundant and were 

excluded from the dataset. As the last step in the feature 

selection process, three wrapper methods were used to search 

for the feature subset that leads to optimal predictive 

performance for each of the ML algorithms tested in the study. 

Wrapper methods [45], [46] search for an optimal feature subset 

fit to a specific machine learning algorithm by creating different 

subsets of features, building ML models based on the algorithm 

selected using the feature subsets and evaluating the models’ 

performance on a chosen metric [49]. In this study the metric 

that the models’ performance was evaluated on was the Mean 

Absolute Error (MAE), described in Metrics section that 

follows.  

     Different strategies of creating the feature subsets result in 

different wrapper methods. For the purposes of this study, we 

used:   

 

• Forward Selection: the model starts empty, and 

features keep being added to it for as long as the 

models’ performance keeps being improved. In each 

iteration the feature that gets added to the features 

subset is the one that leads to the greatest improvement 

of the models’ performance. 

• Backward Elimination: the model starts with all the 

features and in each iteration, features keep being 

removed from it for as long as the models’ 

performance keeps getting improved. In each iteration 

the feature that gets removed from the features subset 

is the one that leads to the greatest improvement of the 

models’ performance. 

• Bidirectional Elimination: works as Forward 

Selection, starting from an empty feature subset and 

adding the feature that leads to the greatest 

improvement of the models’ performance in each 

iteration but with the possibility of deleting a feature 

that was previously added. 

 

     Since the values of the radiomics change depending on the 

different value combinations of the CT imaging parameters, the 

filter methods feature selection process had to be performed for 

each CT image dataset separately. Moreover, because wrapper 

methods are algorithm specific, the wrapper methods feature 

selection process had to be performed separately for each 

combination of CT imaging parameters and ML algorithm, as 

can be seen in Figure 2. The optimal feature combination for 

any ML algorithm and any CT imaging parameters was selected 

according to the best performing model on the metric MAE. 

 

 
Fig. 2 Feature Selection process flowchart for Algorithm X. 

F. Machine Learning Regression Algorithms 

     In total ten supervised ML regression algorithms were 

evaluated: Least Squares Linear Regression [50], Ridge 

Regression [51], LASSO Regression [52], Elastic Net [53] 

Regression, AdaBoost [54] regressor, Gradient Boost [55] 

regressor, XGBoost (eXtreme Gradient Boosting) [56] 

regressor, Random Forest [57] regressor,  Decision Tree [58] 

regressor and Support Vector Regressor (SVR) [59]. All the 

ML algorithm implementations used in this study can be found 

in the open-source software ML library Scikit-learn [40], except 

for XGBoost’s implementation which can be found in the 

XGBoost open-source software library [60].  

     Linear Regression, being one of the most well-known and 

understood ML regression algorithms, can be used as a 

benchmark in this study. In addition to the Ordinary Least 

Squares Linear Regression, three more implementations of the 

algorithm were tested which by the application of different 

regularization terms are enhancing the performance of Linear 

Regression in high-dimensional problems. LASSO and Ridge 

Regressions impose the L1 and L2 regularization to the cost 

function, respectively, while Elastic Net uses a linear 

combination of L1 and L2 regularization [61].   

      ML algorithms based on the concept of ensemble learning 

are considered the state‐of the art solution when dealing with 

complex and high-dimensional data [62]. There are three main 

categories of ensemble learning algorithms: bagging [63], 

boosting [64] and stacked generalization or stacking [65]. 

Embedded bagging and boosting ensemble learning regression 

algorithms were implemented in this study with Random Forest 

and AdaBoost, Gradient Boost and XGBoost respectively.    

G. Training and Evaluation 

      To train an ML model to predict the volume of the muscle 

injury of a given rat over time we need to rearrange our dataset 

into pairs of starting and ending instances. We will be referring 

to these pairs as snapshots. The ML model will be fed with the 

selected input features, including the initial “Voxel Volume”, 

of the injury’s starting instance as well as the time length in 
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days between the initial and the target instance, and the output 

will be the “Voxel Volume” of the injury during the target 

instance.  

      Each of the three rats of the longitudinal study contributed 

with 15 snapshots of injuries. Two of the instances of rat no. 2 

had to be excluded from the dataset because these 

90kVp_200mA CT images were rotated in relation to CT 

images of different value combinations of imaging parameters 

and thus contributing with only 6 snapshots. As a result, the 

longitudinal study offered 36 snapshots, while each rat (n=20) 

of the Single Post-injury study contributed with one snapshot, 

which led to a total of 56 snapshots of injuries per value 

combination of imaging parameters. 

      A variation of the Leave One Out Cross Validation 

(LOOCV) [66] method was used to evaluate the models’ 

performance. LOOCV method was selected in order to counter 

the limited number (n=56) of snapshots of starting and ending 

points of injuries per value combination of imaging parameters. 

The LOOCV method allows us to use more data on the training 

of our models than any other validation method. According to 

this method, our data are divided into two separate sets, a 

training and a validation set. The training set consists of all the 

snapshots, apart from the one snapshot which incorporates the 

validation set of each training iteration. So, only one snapshot 

is used for validation, and the rest of the dataset is used for the 

training of the model. This validation process will be repeated 

as many times as the total number of snapshots. This way we 

end up having a prediction of the Voxel Volume for each of the 

56 snapshots. In our variation of the LOOCV method, when the 

snapshot of the validation set is part of the Longitudinal study, 

the rest of the snapshots that were produced by CT images of 

the same rat were excluded from the training set as well, to 

prevent the introduction of bias. 

H. Metrics 

      To compare the predictive performance of the ML models 

we computed the following performance measures: 

 

1) Mean Absolute Error (MAE) is the average of the 
absolute errors of the model’s predictions against the 
snapshots’ target values. 

2) Root Mean Square Error (RMSE) is the square root 

of the average of the squared errors of the model’s 

predictions against the snapshots’ target values.  
3) R-squared (R2) or coefficient of determination 

represents the proportion of the variance of the target 
value explained by the input features in a regression 
model.  

 

     MAE and RMSE are scale dependent, so they can be used to 

compare the performance of different predictive regression 

models for a particular dataset but not between datasets [67]. 

Smaller MAE and/or RMSE values indicate better predictive 

performance, while larger R2 values indicate better fit of the 

data with values ranging from 0 to 1. 

     Since, according to literature [68], MAE is the more natural 

measure of average error magnitude, and that, unlike RMSE, it 

is unambiguous, it was used as the primary model performance 

measure in this study for performance comparison and 

optimization purposes. 

I. Hyper-parameter Optimization 

      Hyper-parameter optimization or tuning is the process of 

finding a set of hyper-parameter values which allow a ML 

algorithm to better fit the data achieving the best possible 

performance according to a predefined metric, MAE in this 

case, on a cross validation set. Hyper-parameter optimization 

plays a vital role in the prediction accuracy of ML algorithms. 

Different automatic hyper-parameter optimization search 

algorithms have been proposed, such as grid search [69], 

random search [69], Bayesian search [70], gradient-based 

search [71] and multi-fidelity search [72] methods.  

     In this study we applied the implementation of Bayesian 

optimization available in the open-source software ML library 

Scikit-Optimize [73] on the best performing algorithms after 

the feature selection process was completed. Table A2 

(Supplementary Material) lists the sets and the ranges of the 

hyper-parameters per ML algorithm that were optimized with 

the use of Bayesian optimization. Bayesian optimization was 

selected due to its ability to achieve comparable improvement 

of the predictive performance of ML algorithms in significantly 

reduced runtime compared with other optimization methods 

[74]. 

J. Ensemble Learning 

      As a final step in our methodology, we implemented 
ensemble learning techniques on the results of the ML 
regression algorithms to further improve our predictions. 
Ensemble learning [75] refers to the process of developing a 
single “strong” ML model that solves a computational problem 
by strategically combining multiple differently performing 
“weaker” ML models, treating them as a “committee” of 
solvers. The principle is that the prediction of the committee, 
when individual predictions are combined appropriately, 
should have better overall accuracy than any individual model 
(committee member). After the completion of the Hyper-
parameter optimization process, we used the outputs of the 4 
best performing models (XGBoost, Ridge regression, Gradient 
Boost and Random Forest) of the 70kVp, 100mA dataset to 
create weighted average ensemble learning models. 
      Weighted average or weighted sum ensemble [76] is an 
ensemble learning approach that combines predictions from 
multiple models, where the contribution of each model is 
weighted proportionally to the model’s predictive ability. That 
weight is then multiplied by the model’s prediction and is used 
for the calculation of the average prediction. In regression, the 
average prediction is calculated using the arithmetic mean, as 
shown in following equation: 
 

𝑃𝑒 =
∑ 𝑤𝑖
𝑛
𝑖=1 × 𝑃𝑖
∑ 𝑤𝑖
𝑛
𝑖=1

 

 
      Where: Pe is the prediction of the ensemble, n is the total 

number of predictors contributing to the ensemble, Pi is the 

prediction of predictor i, wi is the weight assigned to predictor 

i.   

      We tested 3 different ensemble combinations, starting with 

the best performing model and progressively adding models 

according to best performance. We also used 6 different 

approaches for the assignment of weight to the ML models 

where each model contributes: 
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1. equally (w = 1) to the prediction 

2. by w=1/MAE to the prediction 

3. by w=1/RMSE to the prediction 

4. by w=R2 to the prediction 

5. according to the model's MAE performance to the 

prediction. Weights get values from 1 to the number 

of models. 

6. according to the model's RMSE performance to the 

prediction. Weights get values from 1 to the number 

of models. 

      The sixth approach of weight assignment gave the best 

results. In Table II we present the performance metrics of all 

the ensemble combinations for the sixth weight assignment 

approach. 

 

 
Fig. 3 Diagram of the Voxel Volume predictions of the 6 best 

models over a period of 14 days for 

the Longitudinal’s study Rat 1. 

III. RESULTS 

     In this section, we evaluate the trained models' ability to 
predict the Volume of skeletal muscle injury in rats over time 
for the two sets of imaging parameters. In Table I we can see 
the performance metrics of the 6 best performing algorithms 
after the optimization process for the 70kVp, 100mA dataset. 
The model that achieves the best MAE score of 1.336 uses the 
XGBoost algorithm on the 70kVp, 100mA dataset and uses 7 
input features, 6 of which are radiomics features plus the 
follow-up Day from initial injury. It is notable that the best R2 
score is achieved with Ridge regression for the same imaging 
parameter dataset, but with double number of features (15) 
although its main principle leads on penalizing and minimizing 
the feature space. Figures 3 and 4 depict the Voxel Volume 
predictions of the 6 best models over a period of 14 days for the 
Longitudinal’s study Rats 1 and 2, respectively. 
     Individual diagrams for the best performing models per ML 

algorithm can be seen in Figures A1 – A12 (Supplementary 

Material), while the input features of the 6 best performing 

models for the 70kVp, 100mA dataset can be seen in 

Supplementary Material in Table A3. The performance metrics 

of the best performing models after the conclusion of the feature 

selection process of the ten ML algorithms that were tested in 

this study for each of the different imaging parameters datasets 

can be seen in Tables A4 – A7. The best performing models 

highlighted in Tables A4-A7 with green, were subjected to 

Bayesian hyperparameter optimization. The metrics of the best 

models after the optimization process are depicted in Tables 

A8-A11. 

    Table II shows the performance of the applied ensemble 
learning using weighted average among the 4 best models for 
the same imaging parameters case of 70kVp and 100mA. One 
can clearly see that performance gets enhanced when XGBoost 
is combined with Ridge regression and more learners (Gradient 
Boost and Random Forest) with all metrics exhibiting 
significant improvement compared to the best performing 
individual ML model (XGBoost). Finally, the best performing 
model presents to be the XGB+Ridge+GB ensemble model, 
with the lowest mean average error and the highest R2 value of 
all. RMSE had a very similar value for both XGB+Ridge 
ensemble cases, with and without GB (2.178 and 2.174 
respectively). 

 
Fig. 4 Diagram of the Voxel Volume predictions of the 6 best 

models over a period of 14 days for 

the Longitudinal’s study Rat 3. 

IV. DISCUSSION 

     The results revealed that the predictions of the injury’s 
volume of the XGBoost and Gradient Boost models follow very 
closely the recovery trend of the muscle injury in the 
Longitudinal study’s Rats 1 and 3, as seen in Figures 3 – 4 (also 
in Figures A1 – A4 of the Supplementary Material), contrary to 
the rest algorithms and for example Ridge regression (Figures 
A5 – A6), that appears to achieve comparable performance to 
XGBoost (the best performing model).  
     Hyperparameter optimization improved model performance 
up to ~20% depending on the case and the metric. R2 presented 
the smaller improvement in most cases. 
     As seen in Table I, even though models were trained on 
datasets of different CT imaging parameters combinations, all 
best performing models were trained on datasets where the tube 
current was set to 100mA, indicating an advantage in 
comparison to 200mA. Moreover, four out of the six best 
performing models were trained on the dataset where the peak 
kilovoltage was set to 70 kVp indicating an advantage in 
comparison to 90 kVp. The best individual predictive model 
was based on the XGBoost Regressor algorithm and was trained 
using 7 input features, 6 of which were radiomics extracted 
from the 70kVp, 100mA dataset. This model achieved a MAE 
score of 1.336, an RMSE score of 2.469 and an R2 score of 
0.796. Ensemble learning for the same imaging parameters led 
to improved model performance when combining XGBoost 
with Ridge regression and slightly with GB too, but exhibited 
worse performance when Random Forest was also included in 
the ensemble procedure, as seen in Table II. This verifies that 
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ensemble learning reaches a plateau in the improving 
performance depending on the involved algorithms and their 
inner-working variation. 
 

TABLE I 

THE BEST PERFORMING MODELS AFTER THE 

OPTIMIZATION PROCESS PER IMAGING 

PARAMETERS COMBINATION 

 

Imaging Parameters MAE RMSE R2 

70kV, 100mA 
XGBoost 

1.34 
Ridge 
2.42 

Ridge 
0.80 

90kV, 100mA 
XGBoost 

1.51 
Linear Reg 

2.50 

Linear Reg 
0.79 

70kV, 200mA 
XGBoost 

1.74 

XGBoost 

2.91 
XGBoost 

0.72 

90kV, 200mA 
XGBoost 

1.57 
XGBoost 

2.63 

XGBoost 
0.77 

 
     The best achieved RMSE value of 2.174 (XGB+Ridge 
ensemble model) that corresponds to 6.7% of the mean initial 
injury volume, shows indeed a big improvement (3.1 times 
better performance) compared to the exponential model of 
Paun et al. on the same dataset who achieved RMSE of 6.8 in 
their calculations. 
     The small size of the cohort (n=23) which led to a limited 

(n=56) number of snapshots is the main limitation of the current 

study. However, a comparison was applied on the different ML 

algorithms for the best performing model for skeletal muscle 

injury healing process based on the evaluation of hand crafted 

radiomic features. Due to the small cohort size, the proposed 

methodology should be further validated with larger datasets.  

IV. CONCLUSION 

     In this study we developed a methodology to apply ML 

techniques on radiomics extracted from contrast enhanced CT 

images of skeletal muscle injuries in rats to develop ML models 

to predict the injury recovery progress over time in rats. Our 

results suggest that radiomics can successfully be used to 

predict the volume of a skeletal muscle injury in rats over time. 

Moreover, our results show that different CT imaging 

parameter settings for tube current and peak kilovoltage impact 

the predictive performance of the ML regression models, 

indicating that lower values of tube current and peak 

kilovoltage contribute to more accurate predictions.  

     As further steps, multi-institutional studies on larger cohorts 

and different animal species should be conducted to further 

validate and standardize our methodology. Applications of our 

methodology and/or findings could be used as a tool to assist 

clinicians on skeletal muscle injury diagnosis and treatment, 

through the prediction of the unassisted recovery progress. 

Following the study of P. Contreras-Muñoz et al. [35] on the 

development of a surgical model of skeletal muscle injury in 

rats that reproduces human sports lesion, our work can also 

have a direct impact on human studies. Our aim is to further 

investigate ML models for human translation of the predictions 

Finally, the complete methodology proposed in this study can 

be implemented in different applications (beyond oncology and 

skeletal muscle injuries) using the relevant CT imaging data. 

 

TABLE II 

METRICS OF THE BEST PERFORMING WEIGHTED 

AVERAGE ENSEMBLE MODELS FOR THE 

70kV, 100mA IMAGING PARAMETERS COMBINATION 

 

Ensembles MAE RMSE R2 

XGB 1.336 2.469 0.796 

XGB+Ridge 1.298 2.174 0.842 

XGB+Ridge+GB 1.220 2.178 0.846 

XGB+Ridge+GB+RF 1.240 2.244 0.840 

 

APPENDIX 

     Supplementary material is provided in a separate 

document. 
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